Total Time: 1 Hour 15 MinutesGeneral Instructions:1. All questions are compulsory.2. There is no choice in any of the questions.3. Question number 1 in Section A is of three-mark question.4. Question numbers 2 to 5 in Section A are two-mark questions.5. Question numbers 6 to 9 in Section A are three-mark questions.6. Question numbers 10 to 12 in Section A are four-mark questions.Question 1. State whether the following are true or false. Justify your answ(i) The value of tan A is always less than 1.(ii) sin A = 4/3 for some angle A.(iii) sin (A + B) = sin A + sin B.Question 2. If \angle A and \angle B are acute angles such that $\cos A = \cos B$, then seQuestion 3. In a right triangle ABC, right-angled at B, if tan A = 1, theQuestion 4. $sin 2A = 2 sin A$ is true when $A = ?$	Total Marks: 35
 All questions are compulsory. There is no choice in any of the questions. Question number 1 in Section A is of three-mark question. Question numbers 2 to 5 in Section A are two-mark questions. Question numbers 6 to 9 in Section A are three-mark questions. Question numbers 10 to 12 in Section A are four-mark questions. Question 1. State whether the following are true or false. Justify your answ (i) The value of tan A is always less than 1. (ii) sin A = 4/3 for some angle A. (iii) sin (A + B) = sin A + sin B. Question 3. In a right triangle ABC, right-angled at B, if tan A = 1, the Question 4. sin 2A = 2 sin A is true when A = ? 	
Question 4. $\sin 2A = 2 \sin A$ is true when $A = ?$	show that $\angle A = \angle B$.
	En verify that 2 sin A $\cos A = 1$.
Question 5. Evaluate $\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$	
Question 6. Express $\sin 67^\circ + \cos 75^\circ$ in terms of trigonometric ratios	s of angles between 0° and 45° .
Question 7. If $\tan A = \cot B$, prove that $A + B = 90^{\circ}$.	
Question 8. Evaluate $(\sin 63^\circ + \sin 27^\circ) / (\cos 17^\circ + \cos 73^\circ)$.	
Question 9. $(1 + \tan \theta + \sec \theta) (1 + \cot \theta - \csc \theta)$	
(A) 0 (B) 1 (C) 2 (D) -1	
Question 10. Prove $\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \operatorname{cosec} A + \cot A$, u	sing the identity $\csc^2 A = 1 + \cot^2 A$.
Question 11. Prove $(\operatorname{cosec} A - \sin A)(\operatorname{sec} A - \cos A) = \frac{1}{\tan A + 1}$	cot A
Question 12. Prove $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$	